ZUR SEKUNDÄR- UND TERTIÄRSTRUKTUR DER ACTINOMYCINE, II¹⁾. KONFORMATION UND NMR-SPEKTREN DER PENTAPEPTID-LACTONE⁺⁾

Helmut Lackner

Aus dem Organisch-Chemischen Institut der Universität Göttingen (Received in Germany 17 June 1970; received in UK for publication 3 July 1970)

Die Konformation der Pentapeptidlactongruppen eines Actinomycins $(\underline{3})$ ist sowohl zum Verständnis der von einer günstigen Peptidkettenpräformierung abhängigen Lactonisierungsreaktion $(\underline{1c} \rightarrow \underline{2a}^{2,3})$ als auch für die Untersuchung der Assoziat- und Komplexbildung solcher Cyclopeptide von Interesse. Weiterhin bestimmt sie die Sekundärstruktur¹⁾ des Actinomycins, deren Kenntnis wiederum Aussagen über die Tertiärstruktur¹⁾ und damit auch über die Actinomycin-DNSwechselwirkungen⁴⁾ und das Verhalten von Actinomycinen in Lösung gestattet.

Modellbetrachtungen und die weitgehende Aminosäuresequenz- und Stereospezifität der Lactonisierungsreaktion³⁾ ließen für die 16-gliedrigen Lactonringe <u>eine</u> bevorzugte Konformation erwarten. Infolge der guten Löslichkeit synth. Peptidlacton-Derivate $(2)^{5}$ in Chloroform und Benzol sowie der Schärfe ihrer Spektren schienen NMR-spektrometrische Untersuchungen erfolgversprechend. Als Solvens eignete sich CDCl₃ zunächst⁶⁾ am besten, da es 1. für Vergleichsspektren sowohl Peptide wie <u>1a</u> - <u>1d</u> und deren Vorstufen (z.T. Hydrochloride) als auch die verschiedensten Actinomycine bei 20⁰ gut löst und 2. die Assoziatbildung der Peptide weniger begünstigt als z.B. Benzol⁷⁾.

Da die N-terminalen Schutzgruppen am Cyclo-[L-Thr-D-Val-L-Pro-Sar-L-N-Meval- O_{Thr}], dem Peptidlacton von Actinomycin $C_1(D)$ ($\frac{3}{2}$), das Peptidspektrum praktisch nicht beeinflussen (Tab., Spalten 1-5), wurde für die Messungen neben $\frac{2b}{2}$ vorwiegend das einfachere, über $\frac{1}{2}$, $\frac{1}{2}$ analog $\frac{2b}{2}$ $\frac{5}{}$ synthetisierte $\frac{2}{2}$ benutzt.

Im Spektrum von 2a (Abb.1 u. Tab., Sp.1) sind die C-CH₃-Dubletts (o.77 - 1.00 ppm) von Val bzw. Meval durch Spinentkopplung [(NH) \rightarrow H-2 \rightarrow H-3 \rightarrow CH₃] und über ein 2e-Spektrum (vgl. unten) gut zuzuordnen; ähnliches gilt für CH₃(Thr) (d 1.27), das mit H-3_{Thr} (q 5.81) koppelt. Unter dem H-3,H-4_{Pro}-Multiplett

No.36

(1.8 - 2.4) lassen sich die H-3_{Val}- und H-3_{Meval}-Signale durch Doppelresonanz lokalisieren. CH_{3(ar.)} (2.37) koppelt schwach mit H-5_{ar.} (7.39) und H-2a_{Sar} (d 3.05) geminal mit H-2b_{Sar} (d 4.75). Die für Tertiärstruktur-Analysen wichtigen N-CH₃-Signale von Meval (3.22) und Sar (3.39) wurden ebenso wie H-2_{Val} (4.39), H-2_{Pro} (4.85) und H-6_{ar.} (7.47) über das gezielt deuterierte 2e einwandfrei zugeordnet; NH_{Val} gibt hier ein Singulett (6.49). Die beiden H-5_{Pro} zeigen Multipletts bei 3.55 und 4.10 (CH₃O: 3.88), während die Signale von H-2_{Thr} [4.90; Kopplung mit NH_{Thr} (9.70) sowie H-3] und H-2_{Meval} (4.74) durch Doppel- und Tripelresonanz im Bandenkomplex der Aminosäure- α -protonen identifizierbar sind.

Die 0.09m 22-Lösung wurde vor dem Messen 1 Min. mit 2-3 Tropfen D₂O geschüttelt und zentrifugiert; die Signalschärfe nimmt dadurch bei gleicher Lage (Tab., Sp.2) zu und zahlreiche <u>Nebenbanden</u> [Sp.2 ()] verschwinden. Deren Intensität erreicht in trockenem Benzol (0.1m Lösung) – gemessen im N-CH₃-Bereich – <u>maximal</u> die der Hauptbanden, osmometrische Mol.-Gew.-Bestimmungen geben dann für 22 Werte um 1400 (ber. 675). Bei Verdünnung (0.018, 0.009, 0.0045 m) fallen Mol.-Gew. (1035, 925, 830) und Nebenbandenintensitäten im erwarteten Verhältnis ab. Somit liegen in trockenen Lösungen (in CDCl₃ etwas weniger ausgeprägt) offensichtlich <u>2a</u>-Assoziate – wahrscheinlich Dimere – vor, die beim Schütteln No.36

mit D_0 weitgehend zerlegt werden. Ähnlich verhalten sich 2b - 2e.

Ein Austausch der NH-Protonen erfolgt dabei noch nicht. Die Austauschgeschwindigkeit des vermutlich intramolekular gebrückt vorliegenden NH_{Thr}-Protons ($\delta = 9.7$, bei $+60^{\circ}$ 9.4 ppm; konzentrationsunabhängig) hängt im Gegensatz zu der von NH_{Val} stark von der Art der Schutzgruppe ab: $2c_{,}2d_{,}5-10$ Min., $2a_{,}2b_{,}1-2$ Tage (50-proz. Austausch; CDCl₃/D₂O, im Röhrchen 1 Min. geschüttelt, zentrifugiert, 20°). Das NH_{Val}-Proton zeigt bei Konzentrations- und Temperaturänderungen praktisch keine Signalverschiebung und ist gegen Austausch sehr stabil: CDCl₃/D₂O ca. 10-12 Monate (4°); CDCl₃/CD₃OD(2:1)/Spur D₂O ca. 20 Stdn. (25°); CDCl₃/ CD₃COOD/D₂O (6:3:1) ca. 15 Min. (30°). NH_{Val} bildet demnach eine besonders feste intramolekulare Wasserstoffbrücke.

Mit DREIDING- (vgl. Abb.2) und COREY-PAULING(CPK)-Modellen aufgebaute 2a-Molekülmodelle zeigen – planare trans-Amidbindungen (b,e,h,k) vorausgesetzt – , daß die sterischen Verhältnisse für eine gestreckte NH_{Val}----OC_{Sar}-Wasserstoffbrücke prädestiniert sind (vgl.³⁾); andere intramolekulare Acceptoren entfallen praktisch. Mit dieser transanularen Brücke und dem stabilisierenden Prolinring

Abb.1. NMR-Spektrum⁸⁾ von N-[2-Nitro-3-methoxy-4-methyl-benzoyl]-[cyclo-(L-threonyl-D-valyl-L-prolyl-sarkosyl-N-methyl-L-valyl-O_{Thr})] in CDCl₃/D₂O (o.1m).

No.36

sowie unter Berücksichtigung der VAN-DER-WAALS-Radien liegt aber die Konformation des Peptidlactonringes bereits weitgehend fest (Abb. 2); lediglich der untere 9-gliedrige Teilring erlaubt kleinere Variationen. So kann CO_{Meval} zur Ringrückseite (b¹⁾) zeigen, was aber zu einer sterisch ungünstigen, quasi-axialen Stellung der Meval-isopropylgruppe führt. Weiterhin könnte C-3_{Thr} nach vorn durchklappen, das quasi-axiale $CH_{3(Thr)}$ würde dann zwar quasi-äquatorial, dafür stünden jedoch Peptidring- und Chromophorebene fast senkrecht aufeinander

(erschwerte Dimerenbildung, vgl. unten). Außerdem gibt das Actinomycin-NMR-spektrum Hinweise, daß CH_{3(Thr)} und CH_{3(Sar)} nicht auf der gleichen Ringseite stehen.

Die NMR-Spektren von $2a,b,c^{9},d^{10}$ sind mit der in Abb.2 skizzierten Konformation in Einklang. Der NH-CH_{Val}-Torsionswinkel (Bindung c) weicht mit ca. 120^o nur wenig von dem aus einem der KARPLUS-Funktion¹¹⁾ ähnlichen Diagramm (BYSTROW et al.¹²⁾) für J = 8.2 Hz ermittelten Wert (O oder 150^o) ab; NH und H-2_{Thr} sollten hiernach antiperiplanar stehen. Der Winkel CH-CH_{Thr}(p) muß bei J = 1 Hz, dem Modell entsprechend, um 90^o liegen; eine long-range-Kopplung H-2/CH_{3(Thr}) zeigt sich nicht. Die Kopplungskonstanten von H-2,H-3 in Meval (11.6) und Val (7.0 Hz) würden ebenfalls etwa der anti-

periplanaren bzw. synclinalen Anordnung im CPK-Modell entsprechen. Der große δ -Wert-Unterschied von H-2a/H-2b_{Sar} (1.71 ppm) rührt offenbar von einem "deshielding" des Protons H_b durch C=0_{Pro} her; H_b stünde dann – in Übereinstimmung mit dem Modell – zur Bindung h und damit zu C=0 synperiplanar.

Für die Pentapeptidlactone $\underline{2}\underline{a} - \underline{c}$ ergibt sich so eine vorläufige, jedoch recht wahrscheinliche Konformation (Abb.2), die durch laufende weitere Unter-

1co MHz-NMR-Spektren von Cyclo-(L-Thr-D-Val-L-Pro-Sar-L-N-Meval-O_{Thr})-Derivaten^{a)}

Verbindung Solvens		<u>2a</u> CDC1 ₃ /D ₂ 0 ^{b)}	2a CDCl3 ^{c)}	2b CDCl ₃ /D ₂ 0 ^{b)}	2c 2d CDC13/D20d)		1a CDC1 ₃ b)
NH	Val	6.49 (8.2)	6.48 (7.80)	6.50 (8.2)	6.36	6.53 ^{e)}	6.78 (9.5)
н-6		7.47 (8.0)	7.48 (7.22)	1	8.28	-)
H-5		7.39 (8.0)	7.40 (7.14)	7.38/5.00	6.85	-	7.36/4.99
BZL		-	-	5	-	-	5
H-3	Thr	5.81 (6.3/1.0)	5.81 (5.24)	5.82 (6.3/1.0)	5.85	5.75	4.56 (6.3)
H-2	Thr	4.90 (9.5/1.0)	4.90	4.90 (9.5/1.0)	5.03	4.76	4.43 (9/1)
H-2a	Sar	3.05 (14.0)	3.05	3.04 (14.0)	3.09	3.06	3.38 (16)
H-2b	Sar	4.75 (14.0)	4.75	4.73 (14.0)	4.75	4.77	4.66 (16)
H-2	Pro	4.80 - 4.90	4.80-4.90	4.80-4.90	4.9	4.85	4.9
H-2	Meval	4.74 (11.6)	4.76	4.74 (11.5)	4.74	4.78	4.83 (10)
H-2	Val	4.39 (8.2/7.0)	4.40	4.39 (8.2/7.0)	4.41	4.62 ^{e)}	4.58 (9/7)
H-5a	Pro	4.10	3.9 - 4.2	4.08	4.10	4.03	4.12
H-50	Pro	3.55	3.4 - 3.7	3.52	3.5	3.5	3.65
сндо		3.88	3.88 (3.82)	-	-	3.95	3.66
N-CH3	Sar	3.39	3.39 (2.91)	3.37	3.42	3.41	3.14
N-CH	Meval	3.22	3.21 (3.28)	3.21	3.22	3.20	2.94
4-CH3		2.37 (-0.3)	2.38 (2.32)	2.36 (<0.3)	2.33	-	2.37
H-3	Meval	2.0 - 2.4	2.0 - 2.4	2.0 - 2.4	2.3	2.2	2.15
H-3	Val	1.8 - 2.2	1.8 - 2.2	1.8 - 2.2	2.1	1.75 ^{e)}	2.1
H-3/4	Pro	1.8 - 2.4	1.8 - 2.4	1.8 - 2.4	2.0	1.9	1.7 - 2.4
CH ₃	Thr	1.27 (6.3)	1.27 (1.18)	1.27 (6.3)	1.20	1.22	1.22 (6.3)
(CH3)2	Val	0.97 (6.3) 0.97 (6.3)	0.98 (1.07) 0.98	0.97 (6.4) 0.97 (6.4)	o.94 o.88	0.88 ^{e)} 0.91	0.96 (6) 0.96 (6)
(CH3)2	Meval	0.91 (6.6) 0.80 (6.6)	0.91 0.80 (0.84)	0.90 (6.5) 0.80 (6.5)	0.88 0.80	0.91 0.81	1.00 (6)

a) Interner Standard Tetramethylsilan; $T = 32^{\circ} C$; d-Werte [ppm]; ca. 0.09m Lösungen. b) In Klammern: J [Hz]. - c) In Klammern: d-Werte von einigen Assoziatbanden. d) Auf nur 0.1 ppm genau angegebene d-Werte bezeichnen breitere Multipletts (vgl. Spalten 1 und 3). - e) D-alle statt D-Val; H-4 ca. 1.25; CH₃: d 0.88, t 0.91.

suchungen (IR; NMR-Messungen an Vergleichssubstanzen etc.) noch verfeinert und bestätigt werden muß. Ändert sie sich beim Übergang von z.B. $\frac{2}{2}$ in Actinomycin $C_1(D)^{(3)}(\frac{3}{2})$ nicht, so ist dessen Sekundärstruktur¹⁾ damit bereits vorgezeichnet. Das durch Abbau von Actinomycin C_3 bzw. $C_2^{(10)}$ erhaltene Peptidlacton $\frac{2}{2}$ (D-alle anstatt D-Val) hat sicherlich die gleiche Grundkonformation wie $\frac{2}{2}$ - c (vgl.Tab. Sp.5); auch für Peptidlactone anderer Actinomycine dürfte dies zutreffen.

3194

Die 2g-Dimeren liegen, da die Intensität der NMR-Nebenbanden die der Haupt banden nicht überschreitet und Peptid- und Chromophorsignale sich ähnlich verhalten, wahrscheinlich in der "face to back"(fb=bf)-Grundstruktur¹⁾ mit parallel ausgerichteten Partnern vor. Bei einer ff- oder bb-Tertiärstruktur sollter die Hauptbanden von Gruppen, die wie N-CH_{3(Sar)} aus der Ringebene ragen, entwe der ganz zu Nebenbanden werden (beide N-CH₃ innen; ff) oder wenig verändert (t de außen; bb), jedoch nicht 1:1 aufgeteilt sein (je 1 N-CH₃ innen und außen).

No.36

Die sehr charakteristischen NMR-Spektren (vgl. dazu das des linearen <u>jb</u> ir Sp.6 der Tab.) erlauben sowohl eine sichere Identifizierung der Peptidlactone z.B. nach einem Actinomycinabbau oder in Extrakten von Kulturlösungen als auch die einfache Bestimmung von Cyclisierungsausbeuten bei Synthesen⁵⁾.

Herrn Professor Dr. Dr.e.h. H. Brockmann danke ich für die großzügige Unt stützung dieser Arbeit.

REFERENCES

- *) Auszugsweise vorgetragen auf dem "V. BGZ-Symposium über Naturstoffchemie" vom 16.-18.9.1968 in Zürich (Schweiz).
- 1) I. Mitteil.: H.Lackner, Tetrahedron Letters (London) 1970.
- 2) H.Brockmann und J.H.Manegold, Chem. Ber. 100, 3814 (1967).
- 3) H.Brockmann und H.Lackner, Chem. Ber. 101, 1312 (1968).
- 4) W.Kersten, H.Kersten und H.M.Rauen, <u>Nature</u> (London) <u>187</u>, 60 (1960);
 W.Müller und D.M.Crothers, <u>J. Mol. Biol.</u> <u>35</u>, 251 (1968).
- 5) H.Brockmann und H.Lackner, <u>Chem. Ber.</u> 101, 2231 (1968).
- 6) Da hervorragende Eigenschaften der Actinomycine wie ihre Wechselwirkung m DNS⁴⁾ in wäßrigen Systemen beobachtet werden, wären Messungen in Wasser b sonders interessant. Sie sind aber infolge geringer Löslichkeit der Cyclo peptid-Derivate sehr schwierig und werden an anderer Stelle diskutiert.
- 7) In Benzol sind die C-Methyl-Signale besonders gut aufgelöst. Vgl. auch T. Victor, F.E.Hruska, C.L.Bell und S.S.Danyluk, <u>Tetrahedron Letters</u> (London <u>1969</u>, 4721.
- 8) NMR-Spektrometer: HA-100, Fa. VARIAN Ass., Palo Alto (Calif.), U.S.A.
- 9) Dissert. E.Schulze, Univ. Göttingen 1970.
- 10) H.Brockmann und P.Boldt, Chem. Ber. 101, 1940 (1968).
- 11) M.Karplus, J. Chem. Phys. 30, 11 (1959).
- 12) V.F.Bystrow, S.L.Portnova, V.I.Tsetlin, V.T.Ivanov und Yu.A.Ovchinnikov, <u>Tetrahedron</u> 25, 493 (1969).